94. Stereoselektive Synthese von 3,5-disubstituierten Octahydroindolizinen

von Mojmir Vavrecka¹) und Manfred Hesse*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(13.III.89)

A Stereoselective Synthesis of 3,5-Disubstituted Octahydroindolizines

On catalytic hydrogenation, methyl 6-nitro-9-oxodecanoate (1) underwent cyclization to 2 which, after hydrolysis, gave the bicyclic product 4. By another series of reactions, 2 was transformed to methyl 3-methyloctahydroindolizine-5-carboxylate (7). Conversions of 7a to its C(5)-epimer 7b and *vice versa* were accomplished and the configurations of 7a and 7b determined. Finally, 7b was reduced in three steps to 11 (overall yield from 1, 24%), which is an analog of several natural products.

Einleitung. – Kürzlich haben wir über die Herstellung der ω -substituierten ω -Nitrocarbonsäure-ester des Typs 1 (*Schema 1*, n = 4–6 und 10, $R = CH_3$) und die Anwendung von 1 (n = 4, $R = CH_3$) zur Synthese von (*E*)-9-Oxodec-2-ensäure, dem Sexualpheromon der Honigbiene (*Apis mellifera*) berichtet [1]. Im folgenden soll über die Verwendung von 1 als

a) 10% Pd/C, EtOH, 8–12 atm H_2 ; b) 2N HCl; c) SOCl₂; d) Et₃N, THF; e) *Boc-on*, Et₃N, THF; f) Li[(i-Pr)-(cyclohexyl)N], THF dann I_2 ; g) CF₃COOH; h) Et₃N, THF; i) Li[(i-Pr)(cyclohexyl)N], THF dann I_2 dann NaBH₃CN, MeOH, konz. HCl (pH 3–4); k) LiAlD₄, THF; l) SOCl₃; m) LiAlD₄, THF; n) Bu₃SnH, AIBN, Toluol.

¹) Teil der geplanten Dissertation von *M. V.*, Universität Zürich.

Ausgangsmaterial für eine diastereoselektive Synthese von Octahydroindolizin 11 berichtet werden. Das Hauptanliegen dieser Arbeit ist es, 11 als Prototyp von 3,5-disubstituierten Indolizidin-Alkaloiden zu synthetisieren. Um noch massenspektrometrische Fragestellungen zu klären, wurde das Zielmolekül 11 mit zwei D-Atomen an der Me-Gruppe in Stellung 5 hergestellt. *Kloetzel* [2] und später auch *Stevens* und *Lee* [3] haben gezeigt, dass sich γ -Nitroketone durch katalytische Hydrierung zu *cis*-2,5-disubstituierten Pyrrolidinen cyclisieren. Wird auf diese Art das Pyrrolidin 2 aus 1 hergestellt (*Schema 1*) und gelingt es, in 2 die reaktive α -Stellung des Esters zur weiteren Cyclisierung zu nutzen, liesse sich das Octahydroindolizin 7 gewinnen. Durch Verwendung von verschiedenen Substituenten R im γ -Nitroketon 1, Variation der Konfiguration an C(5) von 7 und Modifizierung der Ester-Gruppe von 7 sind einige Naturprodukte synthetisierbar, welche teilweise in bestimmten Ameisen- (z.B. *Monomorium, Solenopsis*) oder Amphibien-Arten (z.B. *Dendrobates*) vorkommen [4].

Resultate. – Die Cyclisierung des γ -Nitroketons 1 zum Pyrrolidin-hydrochlorid 2 wurde mit 10% Pd/C [3] ausgeführt: nach 6 Tagen Hydrierung wurde 2 in 88% Ausbeute isoliert. Nach Hydrolyse der Ester-Gruppe von 2 in 2N HCl (\rightarrow 3), Umsetzung mit SOCl₂ und Cyclisierung mit Et₃N wurde das bicyclische Keton 4 in 66% Ausbeute erhalten.

Versuche, **2**, **3** oder dessen *N*-Acetyl-Derivat durch die *Hell-Volhard-Zelinsky*-Reaktion oder deren Abwandlungen in α -Stellung zur COO-Gruppe zu halogenieren, blieben ohne Erfolg. Schliesslich wurde der α -Iodo-ester **6** nach Einführung der Boc-Schutzgruppe (*tert*-Butoxycarbonyl) [5] am N-Atom von **2** und Iodierung des geschützten Pyrrolidins **5** [6] (sehr reines Lösungsmittel wird benötigt) in 63% Ausbeute hergestellt . Nach Entfernen der Boc-Schutzgruppe mit CF₃COOH [7] und anschliessender Cyclisierung mit Et₃N wurde das Octahydroindolizin **7** als Diastereoisomerengemisch (**7a/7b** *ca.* 1:1; 84% bzgl. **6**) erhalten. Nach einigen Stunden Rühren in *t*-BuOK/THF stellte sich von **7a** oder **7b** ausgehend ein Gleichgewicht ein (*Schema* 2), welches **7a/7b** im Verhältnis von *ca.* 4:1 lieferte (Ausbeute 92%). Unter sauren (z.B. TsOH oder H₂SO₄) oder im Vergleich zu *t*-BuOK schwächer basischen Bedingungen (z.B. NaOCH₃) konnte dieses Gleichgewicht nicht erreicht werden. Iodierung am C(5) von **7a** [6] (\rightarrow **12**) und Reduktion des anschliessend entstandenen Iminium-Salzes **13** mit NaBH₃CN [8] (*Schema* 2) ergaben **7a/7b** im Verhältnis von *ca.* 1:3 (Ausbeute 98%).

Die Reduktion der Ester-Gruppe des Octahydroindolizins **7b**, welches die gleiche relative Konfiguration an C(5) besitzt wie einige aus Ameisen isolierte Indolizidin-Alkaloide, wurde mit LiAlD₄ ausgeführt, um die Me-Gruppe an C(5) des Zielmoleküls **11** zu markieren, und lieferte den Alkohol **8** in 93% Ausbeute (*Schema 1*). Bei den Versuchen, **8** zu tosylieren oder zu mesylieren, ergaben sich Schwierigkeiten, so dass die Weiterreduktion zur Me-Gruppe auf anderem Weg erreicht werden musste. Schliesslich wurde durch kurzes Aufkochen von **8** · HCl in SOCl₂ das Hydrochlorid des β -Chloroamins **9** erhalten [9], dessen Reduktion mit LiAlD₄ das (D₃)Derivat **10** jedoch in sehr schlechter Ausbeute lieferte. Erst die Reduktion von **9** mit Bu₃SnH/AIBN (= 2,2'-Azobis(isobutyronitril) = 2,2'-Dimethyl-2,2'-azobis(propannitril)) [10] ergab *r*-3,*c*-5-(5-*methyl*-²H₂)Dimethyl-1,2,3,5,6,7,8,*t*-8a-octahydroindolizin (**11**), welches als Hydropikrat isoliert wurde (72% Ausbeute bzgl. **8**).

a) Li[(i-Pr)(cyclohexyl)N], THF dann I₂; b) NaBH₃CN, MeOH, konz. HCl (pH 3-4); c) t-BuOK, THF.

Diskussion. – Die reduktive Cyclisierung des γ -Nitroketons 1 führte zum *cis*-substituierten Pyrrolidin 2 [3]. Von 2 ausgehend wurde 4 oder 7 synthetisiert (*Schema 1*). Das 1-Azabicyclo[5.3.0]decan-Gerüst von 4 kommt in wenigen Alkaloiden als Grundgerüst vor (z. B. in Croomin oder Cephalotaxin [11]).

Im Schlüsselschritt der Synthese von 3,5-disubstituierten Octahydroindolizinen sollte die Konfiguration an C(5) nach Wunsch verändert werden können. Dies liess sich auf der Stufe des Esters 7 durchführen: unter stark basischen, wasserfreien Bedingungen wurde 7b weitgehend in das thermodynamisch stabilere Epimer 7a übergeführt, während die stereoselektive, kinetisch kontrollierte Umwandlung $7a \rightarrow 7b$ über das α -Iodo-Derivat 12 und das Iminium-Salz 13 gelang (*Schema 2*). Letzterer Reaktionsweg wurde gewählt, da bekannt ist, dass Iminium-Salze des Typs 13 (mit unterschiedlichen Substituenten an C(3) und C(5)) mit NaBH₃CN stereoselektiv zu all-*cis*-substituierten Octahydroindolizinen reduziert werden können [3]. Es war auch anzunehmen, dass das N-Atom in 12 durch Nachbargruppenbeteiligung unter Entstehung des gewünschten 13 Iodid eliminieren würde.

Die Massenspektren von Verbindungen mit sogenannten 'Izidin'-Gerüsten (Pyrrolizidin, Indolizidin, Chinolizidin), die in & Stellung zum N-Atom Alkyl-Reste (R¹, R²) tragen, sind durch intensive $[M-R^1]^+$ - und $[M-R^2]^+$ -Signale charakterisiert [12]. Sind die beiden Ringe unterschiedlich gross, so ist es von Interesse zu wissen, in welchem der beiden Ringe die &Spaltung bevorzugt abläuft, oder ob gar keine Unterschiede bestehen. Dieser Vergleich ist aber nur möglich, wenn die Reste R¹ und R² möglichst gleich sind. Aus diesem Grund ist **11** für solche Untersuchungen besonders geeignet. Das Ergebnis ist, dass die &Spaltung der Me-Gruppe sowohl unter CI- als auch unter EI-Bedingungen im 5Ring bevorzugter abläuft ($[M - CH_3]^+$ als im 6Ring $[M - CHD_2]^+$). Durch die Aufnahme von EI-MS-Spektren bei verschiedenen Ionisationsenergien wurde diese Beobachtung untermauert. Der Pik bei m/z 138 ($[M - CHD_2]^+$) nimmt bei kleineren Ionisationsenergien gegenüber dem Basispik bei m/z 140 ($[M - CH_3]^+$) ab. Intensität des Piks bei m/z 138: 70 eV, 67%; 30 eV, 64%; 20 eV, 53%; 15 eV, 33%. Die Zuordnung der Konfiguration²) und Konformation der Octahydroindolizine 7a und 7b erfolgte aufgrund ihrer IR- und NMR-Daten sowie der Röntgenstrukturanalyse von $7a \cdot HBr$.

Die relative Konfiguration von 3,5-disubstituierten Octahydroindolizinen an C(3), C(5) und C(8a) kann anhand von sogenannten *Bohlmann*-Banden im IR (*ca.* 2800–2700 cm⁻¹, [13]) und anhand der unterschiedlichen chemischen Verschiebung der axialen und äquatorialen Protonen an C(3), C(5) und C(8a) [14a] im ¹H-NMR bestimmt werden. Diese zwei Bestimmungsmöglichkeiten beruhen auf der Wechselwirkung des freien Elektronenpaares am N-Atom mit der entsprechenden (C–H)-Bindung und sind ein Mass für die Grösse der Dihedralwinkel zwischen dieser Bindung und dem freien Elektronenpaar [14b].

Zusammenfassend lassen sich aufgrund von Literaturdaten für 3,5-disubstituierte Octahydroindolizine folgende Aussagen machen [14]: *a*) Ein Molekül mit ausgeprägten *Bohlmann*-Banden besitzt ein *trans*annelliertes Gerüst. *b*) Je mehr axiale H-Atome dieses Molekül an C(3), C(5) und C(8a) besitzt, desto ausgeprägter sind diese IR-Banden. *c*) Die chemischen Verschiebungen der axialen H-Atome an C(3), C(5) und C(8a) liegen bei einem um *ca*. 1 ppm höheren Feld als diejenigen der entsprechenden äquatorialen H-Atome. *d*) Die chemischen Verschiebungen von C(3), C(5) und C(8a) eines all-*c*-substituierten Moleküls liegen bei tieferen Feldern als diejenigen aller anderen Diastereoisomeren.

Im vorliegenden Fall zeigt die Röntgenstrukturanalyse des Hydrobromids von r-3-Methyl-1,2,3,5,6,7,8,t-8aoctahydroindolizin-t-5-carbonsäure-methylester²) (7a · HBr) eindeutig die t-5-Konfiguration und Sessel-Konformation für den 6Ring (*Fig. 1*). Folglich ist 7b das c-5-Epimere. Aufgrund der Konformationsanalyse von 7a (s. *Tab. 1* und *Fig. 2*) scheint der 6Ring in Lösung in der Sessel-Form vorzuliegen (*Fig. 2*). Dies steht in Übereinstimmung mit der von *Sonnet et al.* [14] vorgeschlagenen Konformation für r-3-Butyl-t-5-methyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin.

Fig.1. Stereoskopische Darstellung von 7a · HBr

 Tab. 1. Kopplungskonstanten der 6Ring-Protonen von 7a aus Entkopplungsexperimenten (400 MHz, CDCl,)*)

<u> </u>	H–C(5)	H_{ax} -C(6)	$H_{eq} - C(6)$	$H_{eq} - C(7)$	H_{ax} -C(7)	$H_{ax} - C(8)$	H_{eq} -C(8)
H –C(6)	m						
$H^{ax} - C(6)$	k	g					
H^{eq} –C(7)		ĸ	k				
H^{eq} -C(7)		g	k	g			
$H^{ax}_{-C(8)}$		-		k	g		
$H_{}^{ax}-C(8)$				k	k	g	
H - C(8a)						g	k

²) Die Angaben *cis/trans* beziehen sich auf die Konfiguration des Octahydroindolizin-Gerüstes, d.h. auf die Stellung der Bindung H–C(8a) und des freien Elektronenpaares am N-Atom zueinander. Die relative Konfiguration der Octahydroindolizin-Substituenten wird durch *c*(*cis*)/*t*(*trans*) angegeben, wobei auf den Substituenten mit dem niedrigsten Lokanten (Me–C(3)) Bezug genommen wird.

Aufgrund der starken Bohlmann-Banden im IR-Spektrum von 7b dürfte auch 7b ein trans-annelliertes Octahydroindolizin-Gerüst besitzen. Aus dem Vergleich der chemischen Verschiebungen und der Kopplungskonstanten (Tab. 1 und 2) folgt, dass H-C(5) in 7a äquatorial und in 7b axial steht. Deshalb liegt auch in 7b der 6Ring höchstwahrscheinlich in der Sessel-Konformation vor (Fig. 2). Dieser Befund steht im Gegensatz zu der in [14a] aufgrund der 'H-NMR-Daten vorgeschlagenen Wannen-Konformation für r-3,c-5-Dimethyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin, die dadurch erklärt wurde, dass in der Sessel-Konformation die zwei Me-Gruppen in ungünstiger 1,3-diaxialer Stellung zueinander liegen müssten. Im Falle von 7b ist die 1,3-diaxiale Wechselwirkung der entsprechenden Gruppen (Me, COOMe) aber offenbar so klein, dass der 6Ring in der Sessel-Konformation vorliegen kann (vgl. Fig. 2). Auffällig an den Spektren von 7a und 7b ist ferner der grosse Unterschied zwischen den chemischen Verschiebungen von H-C(8a) (Tab. 2) und den Intensitäten der Bohlmann-Banden (bei 7a nur sehr schwach). Aufgrund der spektroskopischen Eigenschaften von 3,5-disubstituierten Octahydroindolizinen (s. oben) müsste man daraus schliessen, dass die (H–C(8a))-Bindung in 7a äquatorial liegt, das Octahydroindolizin-Gerüst folglich cis-annelliert ist. Die Röntgenstrukturanalyse (Fig. 1), die Konformationsanalyse (Fig. 2 und Tab. 1) und Betrachtungen am Dreiding-Modell weisen jedoch auf ein transannelliertes Gerüst hin. Die Tieffeldverschiebung von H-C(8a) im ¹H-NMR-Spektrum von 7a gegenüber 7b und das Fehlen der Bohlmann-Banden im IR-Spektrum von 7a müssen also durch den Anisotropie-Effekt der COOMe-Gruppe und eine Abweichung der (H-C(8a))-Bindung von der axialen Lage (1,3-diaxiale Wechselwirkung mit der COOMe-Gruppe, Fig.2) erklärt werden.

Fig. 2. Konformationen von 7a ($R^1 = H$, $R^2 = CO_2CH_3$) und 7b ($R^1 = CO_2CH_3$, $R^2 = H$) in CDCl₃

	'H-NMR			¹³ C-NMR		
	HC(3)	H-C(5)	H–C(8a)	C(3)	C(5)	C(8a)
7a	2,78	3,78	3,02ª)	55,0	60,2	61,7
7b	2,30	2,70	1,94ª)	60,6	66,7	65,5

Tab. 2. Chemische Verschiebungen [ppm] von ¹H und ¹³C in Stellungen 3, 5 und 8a von 7a und 7b (in CDCl₃, mit TMS als intermem Standard)

Die vorliegende Arbeit wurde in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

Experimenteller Teil

Allgemeines. Die für die Reaktionen verwendeten Lsgm. ausser EtOH (99,5%) wurden getrocknet, Lsgm. für die Aufarbeitungen und Chromatographien destilliert. Alle Reaktionen wurden unter Ar durchgeführt. Trocknung der org. Extrakte mit MgSO₄. Säulenchromatographie (SC): Kieselgel 60 (*Merck*, 70–230 'mesh'). Präp. DC an Kieselgel 60 *F 254 (Merck*, 2 mm auf Glas). Schmp.: *Mettler FP-5/FP-52*. IR-Spektren: *Perkin-Elmer 297* oder 791; in CHCl₃; Angaben in cm⁻¹. NMR-Spektren: *Varian EM-390*, XL-200 oder *Bruker AM-400*; in CDCl₃; δ in ppm relativ zu internen (CH₃)₄Si (= 0 ppm); 'H-NMR bei 90 (wenn speziell erwähnt), 200 oder 400 (wenn speziell erwähnt) MHz, *J* in Hz; ¹³C-NMR bei 50,3 MHz, Multiplizitäten aus DEPT-Experimenten. MS: *Varian MAT 112 S* oder *Finnigan MAT 90* (wenn speziell erwähnt), in *m/z*; EI = Elektronenstossionisation, Intensitäten $\geq 5\%$ und interpretierbare Signale $m/z \geq 40$; CI = chemische Ionisation, Reaktantgas: Isobutan. *Boc-on* = 2-{[(*tert*-Butoxy)carbonyloxy]jimino}-2-phenylacetonitril.

1. cis-2-[4-(*Methoxycarbonyl*)*butyl*]-5-*methylpyrrolidinium-chlorid* (2). Bei 8–12 atm H₂-Druck wurden 25 g (0,102 mol) 6-Nitro-9-oxodecansäure-methylester (1) [1] in 800 ml EtOH in Gegenwart von 3,2 g 10% Pd/C 144 h hydriert. Nach Filtration über *Celite* und Abdampfen wurde der ölige Rückstand in *ca.* 900 ml Et₂O gelöst und durch die Lsg. bei 0° trockenes HCI-Gas geleitet 21,05 g (88%) **2**, farblose Kristalle. Schmp. 109–110°. IR (KBr): 2940s, 2780, 2520, 2400 (2780–2400, br., $>NH_2^+$), 1730s (C=O), 1455, 1430, 1245, 1190s (C–O), 1175. ¹H-NMR (90 MHz): 10,2 (br. *s*, 1 H, mit D₂O austauschbar, $>NH_2^+$); 9,1 (br. *s*, 1 H, mit D₂O austauschbar, $>NH_2^+$); 9,30–3,27 (*m*, 5 H), darin bei 3,67 (*s*, CH₃O); 2,5–1,3 (*m*, $_{15}^+$ H), darin bei 2,35 (*t*, *J* = 7, CH₂COOCH₃), bei 1,60 (*d*, *J* = 7, CH₃-C(5)). ¹³C-NMR (D₂O, Standard: CD₃CN): 170,0 (*s*, COOCH₃); 60,8 (*d*, C(2)); 56,6 (*d*, C(5)); 52,4 (*q*, CH₃O); 33,6, 31,8, 30,4, 28,9, 25,7, 24,2 (6 *t*); 17,2 (*q*, CH₃-C(5)). EI-MS: 199 (2, *M*⁺ der freien Base), 184 (2, [*M* – CH₃]⁺), 168 (5, [*M* – CH₃O]⁺), 98 (7), 85 (6), 84 (100, [*M* – C₄H₈CO₂CH₃]⁺), 70 (7), 67 (6), 60 (5), 58 (7), 44 (8), 43 (8), 42 (6), 41 (7). Anal. ber. für C₁₁H₂₂CINO₂ (235,755): C 56,04, H 9,41, Cl 15,04, N 5,94; gef. C 55,80, H 9,31, Cl 14,90, N 5,85.

2. cis-2-(4-*Carboxybutyl*)-5-*methylpyrrolidinium-chlorid* (**3**). Eine Lsg. von 1 g (4,3 mmol) **2** wurde 3 h in 150 ml 1N HCl unter Rückfluss gekocht, anschliessend eingedampft und umkristallisiert (Aceton): 0,883 g (94%) **3**, farblose Kristalle. Schmp. 140–142^e. IR (KBr): 3400, 3100, 2920s, 2780, 2705 (3400–2705, br., COOH und $>NH_2^+$), 1725s (C=O), 1450, 1390, 1230, 1150s. 'H-NMR (D₂O): 3,80–3,46 (*m*, H–C(2), H–C(5)); 2,37 (*t*, *J* = 7,2, CH₂COOH); 2,32–2,10 (*m*, 2 H); 1,86–1,54 (*m*, 6 H); 1,52–1,30 (*m*, 5 H), darin bei 1,37 (*d*, *J* = 6,7, CH₃–C(5)). ¹³C-NMR (D₂O, Standard: CD₃CN): 178,8 (*s*, COOH); 60,9 (*d*, C(2)); 56,8 (*d*, C(5)); 33,8, 32,0, 30,4, 29,0, 25,8, 24,2 (6 *t*); 17,2 (*q*, CH₃–C(5)). CI-MS: 186 ([*M* + 1]⁺ der freien Base). EI-MS: 185 (1, *M*⁺ der freien Base), 158 (8), 85 (9), 84 (100, [*M* – C₄H₈COOH]⁺), 82 (6), 81 (5), 72 (21), 70 (12), 69 (11), 68 (5), 67 (12), 57 (7), 56 (7), 55 (10), 44 (11), 43 (11), 42 (11), 41 (20). Anal. ber. für C₁₀H₂₀CINO₂ (221,728): C 54,17, H 9,09, CI 15,99, N 6,32; gef.: C 54,26, H 9,27, CI 16,09, N 6,31.

3. cis-10-Methyl-1-azabicyclo[5.3.0]decan-2-on (4). Eine Lsg. von 0,530 g (2,39 mmol) 3 und 5 ml SOCl₂ wurde 12 h bei 20° gerührt, SOCl₂ abgezogen, der ölige Rückstand in 20 ml Toluol gelöst und diese Lsg. unter heftigem Rühren bei 20° synchron mit einer Lsg. aus 1,7 ml (12 mmol) Et₃N in 20 ml Toluol in ein Gefäss mit 260 ml Toluol während 2 h getropft. Dann wurde 1 h nachgerührt, der ausgefallene Festkörper (Et₃N · HCl) abfiltriert, mit Toluol gewaschen und das Filtrat eingedampft. Nach Kugelrohrdest.: 280 mg (70%) 4, farbloses, hygroskopisches Öl. Sdp. 90°/0,007 Torr. IR (Film): 2960s, 2930s, 2860, 1760, 1640s (Amid), 1420s, 1370, 1360, 1345, 1265, 1220, 1210, 1175, 1110, 1100. 'H-NMR: 4,32-4,22 (*quint*.-artiges *m*, H–C(10)); 3,74–3,56 (*q*-artiges *m*, H–C(7)); 2,66–1,12 (*m*, 15 H), darin bei 1,18 (*d*, J = 6,6, CH₃–C(10)); Einstrahlung bei 1,2 → 4,31 (*d*, J = 6,5, H–C(10)). ¹³C-NMR: 173,0 (*s*, C(2)); 58,8 (*d*, C(7)); 53,5 (*d*, C(10)); 3,69, 32,3, 29,8, 29,3, 23,0 (6 *t*); 19,6 (*q*, CH₃–C(10)); Einstrahlung bei 4,31 → 53,4 (*s*, C(10)); bei 3,64 → 58,7 (*s*, C(7)). EI-MS: 167 (30, *M*⁺), 153 (10), 152 (100, [*M* – CH₃]⁺), 124 (13), 85 (7), 84 (85), 83 (9), 82 (9), 81(9), 79 (5), 69 (5), 68 (14), 67 (14), 57 (22), 56 (11), 55 (24), 54 (6), 53 (5), 44 (7), 43 (5), 42 (15), 41 (30), 40 (7). Anal. ber. für C₁₀H₁₇NO (167,250): C 71,80, H 10,26, N 8,38; gef.: C 71,41, H 10,54, N 8,17.

4. cis-5-{1'-[(tert-Butoxy)carbonyl]-5'-methylpyrrolidin-2'-yl}pentansäure-methylester (5). In 80 ml THF wurden 7,36 g (0,031 mol) **2**, 10 g (0,041 mol) *Boc-on* und 30 ml (0,216 mol) Et₃N 20 h bei 20° gerührt. Dann wurde eingedampft, der Rückstand in 100 ml CH₂Cl₂ aufgenommen und 3mal mit 1N NaOH gewaschen. Die vereinigten wässr. Phasen wurden einmal mit wenig CH₂Cl₂ gewaschen und die vereinigten CH₂Cl₂-Phasen getrocknet und eingedampft. Der ölige Rückstand wurde durch SC gereinigt (Toluol mit 1% MeOH): 8,62 g (93%) 5, farbloses Öl. Sdp. 180–185°/0,05 Torr. IR: 3030, 3000, 2970, 2950, 2930, 2870, 1730s (C=O, Ester), 1680s (C=O, Urethan), 1480, 1460, 1455, 1440, 1395s (C–N), 1370s, 1350, 1320, 1245, 1175s, 1125, 1105. 'H-NMR: 3,98–3,60 (*m*, 5 H), darin bei 3,66 (*s*, COOCH₃); 2,32 (*t*, *J* = 7,4, 2 H–C(2)); 2,10–1,41 (*m*, 16 H), darin bei 1,46

(*s*, *t*-Bu); 1,41–1,04 (*m*, 6 H), darin bei 1,20 (*d*, J = 6,2, CH₃–C(5')). ¹³C-NMR: 173,6 (*s*, C(1)); 154,4 (*s*, C=O, Urethan); 78,4 (*s*, *t*-Bu); 58,0 (*d*, C(2')); 53,6 (*d*, C(5')); 51,0 (*q*, CH₃O); 35,2, 33,7, 31,5, 29,1 (4 *t*); 28,2 (*q*, *t*-Bu); 25,6, 24,6 (2 *t*); 21,7 (*q*, CH₃–C(5')). CI-MS: 300 ([M + 1]⁺), 198 (100). EI-MS: 198 (8), 184 (10), 129 (6), 128 (82), 87 (5), 85 (7), 84 (100, [$M - H_2C=C(CH_3)_2 - CO_2 - C_4H_8COOCH_3$]⁺), 67 (6), 57 (76), 56 (5), 55 (9), 42 (5), 41 (24). Anal. ber. für C₁₀H₃₀NQ₄ (299,414): C 64,18, H 9,76, N 4,68; gef.: C 64,17, H 9,81, N 4,65.

5. cis-2-Iodo-5-{1'-[(tert-butoxy)carbonyl]-5'-methylpyrrolidin-2'-yl}pentansäure-methylester (6). Zu einer Lsg. aus 3,74 ml (22,3 mmol) N-Cyclohexyl(isopropyl)amin in 10 ml THF wurden bei -78° unter Rühren 14,2 ml (22,7 mmol) 1,6N BuLi Lsg. in Hexan während 15 min zugetropft, danach wurde 40 min bei 20° gerührt und erneut auf -78° gekühlt. Darauf wurden 6,055 g (20,3 mmol) 5 in 8 ml THF während 30 min zugetropft. Das Gemisch wurde auf 20° erwärmt und unmittelbar in eine intensiv gerührte Lsg. von 6,183 g (24,4 mmol) I, bei -78° 30 min getropft. Nach beendeter Zugabe, wurde 20 min nachgerührt und dann 3,8 ml konz. HCl langsam zugetropft. Das Kühlbad wurde entfernt, das Gemisch 2mal mit je 12 ml 30% wässr. (Na₂S₂O₁ · 5 H₂O)-Lsg. gewaschen, die org. Phase mit Et₂O verdünnt, getrocknet, eingeengt und der Rückstand mittels SC gereinigt (CH₂Cl₂ mit 2% AcOEt), 5,859 g (68%) 6, farbloses, zähes Öl (Zers. bei Destillation). IR: 3000, 2970, 2930, 2870, 1730s (C=O, Ester), 1680s (C=O, Urethan), 1475, 1450, 1435, 1395s (C-N), 1365s, 1350, 1320, 1270, 1245, 1170, 1120, 1100. ¹H-NMR (Diastereoisomerengemisch): 4,32 ('td', J = 7,6, 0,7, H–C(2)); 4,00–3,60 (m, 5 H), darin bei 3,75 (s, CH₂O); 2,16–1,06 (m, 23 H), darin bei 1,46 (s, t-Bu), bei 1,20 (d, $J = 6,2, CH_2 - C(5')$). ¹³C-NMR (Diastereoisomerengemisch, Verdoppelung der Signale von C(2) und C(3)): 171,1 (s, C(1)); 154,1 (s, C=O, Urethan); 78,3 (s, t-Bu); 57,6, 53,5 (2 d, C(2'), C(5')); 52,2 (q, CH,O); 35,4, 35,6 (2 t, C(3)); 34,4, 31,3, 29,0 (3 t); 28,1 (q, t-Bu); 25,7 (t); 21,6 (q, CH, -C(5')); 20,2, 19,9 (2 d, C(2)). CI-MS: 426 ($[M + 1]^+$); 369 (100, $[M - 1]^+$); 360 (100, $[M - 1]^+$); 360 (100, $[M - 1]^+$ CH₂=C(CH₂),]⁺). Anal. ber. für C₁₆H₂INO₄ (425,310): C 45,19, H 6,64, I 29,84, N 3,24; gef.: C 45,34, H 6,63, I 29,70, N 3,33.

6. r-3-Methyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin-t-5-carbonsäure-methylester (**7a**) und r-3-Methyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin-c-5-carbonsäure-methylester (**7b**). Bei 0° wurden 3,119 g (7,34 mmol) **6** in 10 ml CF₃COOH 30 min gerührt. Dann wurde eingedampft und der Rückstand in 10 ml THF aufgenommen und während 1 h synchron mit 30 ml Et₃N bei 20° unter starkem Rühren in 800 ml THF getropft. Nach beendeter Zugabe wurde 4 h weitergerührt, eingedampft, der ölige Rückstand in 120 ml ges. wässr. Na₂CO₃-Lsg. aufgenommen, 3mal mit Et₂O gewaschen, die vereinigten Et₂O-Phasen getrocknet und eingedampft. SC (Hexan/ Et₂O 8:2) ergab 0,605 g (42%; R_r ca. 0,3) **7a** und 0,612 g (42%; R_r ca. 0,2) **7b**, farblose Öle.

7a: IR: 2940*s*, 2870, 1730*s* (C=O), 1455, 1445, 1435, 1375, 1365, 1260, 1230, 1195*s*, 1165*s*, 1135, 1115. 'H-NMR (400 MHz): 3,78 (*dd*, *J* = 6,0, 2,0, H–C(5)); 3,63 (*s*, CH₃O); 3,02 (*m*, H–C(8a)); 2,78 (*ddq*, erscheint als *sext*, *J* = 6,0, H–C(3)); 1,92 (*dddd*, erscheint als *dq*, *J* ≈ 13, 3, H_{eq}–C(6)); 1,87–1,66 (*m*, 4 H), darin bei *ca*. 1,80 (*m*, H_{eq}–C(8)), bei *ca*. 1,72 (*m*, H_a–C(6)); 1,59 (*ddddd*, erscheint als *dquint*, *J* ≈ 13, 3, H_{eq}–C(7)); 1,46 (*ddddd*, erscheint als *qt*, *J* ≈ 13, 3, H_{ax}–C(7)); 1,33–1,00 (*m*, 6 H), darin bei 1,10 (*dddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{ax}–C(7)), bei 1,03 (*d*, *J* = 6,0, CH₃–C(3)); Einstrahlung bei 3,78 → 1,92 (br. *d*, *J* ≈ 13, H_{eq}–C(6)), → *ca*. 1,72 (*m*, H_{ax}–C(6)); bei 1,92 → 3,78 (*d*, *J* = 6,0, H–C(5)), *ca*. 1,72 (*m*, H_{ax}–C(6)), 1,59 (*dddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{eq}–C(7)), 1,46 (*dddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{ax}–C(6)), 1,59 (*ddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{eq}–C(7)), 1,10 (*ddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{ax}–C(8)); bei 1,92 → 3,78 (*d*, *J* = 6,0, H–C(3)); bei 1,46 → 1,92 (br. *d*, *J* ≈ 13, H_{eq}–C(6)), *ca*. 1,72 (*m*, H_{ax}–C(6)), 1,10 (*ddd*, erscheint als *qd*, *J* ≈ 13, 3, H_{ax}–C(8)); bei 1,46 → 1,92 (br. *d*, *J* ≈ 13, H_{eq}–C(6)); *t*,59 (br. *d*, *J* ≈ 13, H_{eq}–C(7)), 1,10 (*ddd*, erscheint als *dd*, *J* ≈ 13, 3, H_{ax}–C(8)); bei 1,46 → 1,92 (br. *d*, *J* ≈ 13, H_{eq}–C(6)), *t*,59 (br. *d*, *J* ≈ 13, H_{eq}–C(7)), 1,10 (*ddd*, erscheint als *t*, *J* = 6, (H–C(3)); 1:10 → 3,02 (*m*, H–C(8a)), *ca*. 1,80 (br. *s*, H_{eq}–C(7)), 1,59 (br. *d*, *J* ≈ 13, H_{eq}–C(6)); 1,59 (br. *d*, *J* ≈ 13, H_{eq}–C(6)); bei 1,03 → 2,78 (*dd*, erscheint als *t*, *J* = 6, H–C(3)). ¹³C–NMR: 173,0 (*s*, C=O); 56,6 (*d*, C(8a)); 55,5 (*d*, C(5)); 54,8 (*d*, C(3)); 50,4 (*q*, CH₃O); 31,6, 30,3, 29,3, 27,8, 20,4 (5 *t*; 18,5 (*q*, CH₃–C(3)); Einstrahlung bei 3,82 → 55,4 (*s*, C(5)); bei 3,05 → 56,6 (*s*, C(8a)); bei 2,81 → 54,8 (*s*, C(3)). CI-MS: 198 ([*M* + 1]⁺), 138 (1

7a · HBr: IR: 2960*s*, 2590, 2560, 2540, 2490, 2470, 2430, 2380 (2590–2380, R_3NH^+), 1745*s* (C=O), 1455, 1450, 1430, 1415, 1375, 1265, 1235, 1215, 1200, 1180, 1140, 1105. ¹H-NMR: 10,94 (br. *s*, NH⁺); 4,39 (br. *d*, *J* = 5,4, H–C(5)); 4,10–3,88 (*m*, H–C(8a)); 3,82 (*s*, CH₃O); 3,00–2,78 (*m*, H–C(3)); 2,48–1,22 (*m*, 13 H), darin bei 1,64 (*d*, *J* = 6,6, CH₃–C(3)). ¹³C-NMR: 167,4 (*s*, COOCH₃); 61,7 (*d*, C(8a)); 60,2 (*d*, C(5)); 55,0 (*d*, C(3)); 52,8 (*q*, CH₃O); 27,3, 27,0, 26,2, 25,5, 18,9 (5*t*); 14,0 (*q*, CH₃–C(3)). CI-MS: wie **7a**. Anal. ber. für C₁₁H₂₀BrNO₂ (278,197): C 47,49, H 7,25, Br 28,72, N 5,04; gef.: C 47,53, H 7,37, Br 28,91, N 5,16.

7b: IR: 2950*s*, 2870, 2820, 2780, 2740 (br., 2820–2740 *Bohlmann*-Banden), 1735*s* (C=O), 1465, 1450, 1440, 1395, 1380, 1345, 1320, 1285, 1270, 1235, 1195, 1170, 1130, 1115. ¹H-NMR (400 MHz): 3,70 (*s*, CH₃O); 2,70 (*d*, *J* = 10,9, 2,9, H–C(5)); 2,35–2,25 (*m*, H–C(3)); 1,99–1,89 (*m*, H–C(8a)); 1,88–1,61 (*m*, 6 H), darin bei *ca*. 1,77–1,63 (*m*, 2 H–C(6)); 1,52–1,40 (*m*, 1 H); 1,40–1,17 (*m*, 3 H): 0,98 (*d*, *J* = 6,1, CH₃–C(3)); Einstrahlung bei 0,98 \rightarrow 2,33 (*m*, H–C(3)); bei 2,70 \rightarrow 1,88–1,61 (*m*, 6 H), darin bei *ca*. 1,77–1,63 (*m*, 2 H–C(6)). ¹³C-NMR: 174,2 (*s*, C=O); 66,7 (*d*, C(5)); 65,5 (*d*, C(8a)); 60,6 (*d*, C(3)); 51,0 (*q*, CH₃O); 30,34, 29,81, 29,61, 27,56, 23,2 (5*t*); 19,2 (*q*, CH₃–C(3)); Einstrahlung bei 2,73 \rightarrow 66,7 (*s*, C(5)); bei 2,33 \rightarrow 60,6 (*s*, C(3)). CI-MS: wie **7a**.

7. Epimerisierung von 7b zu 7a. Bei 0° wurden zu 1,022 g (5,19 mmol) 7b 27 mł 0,2N t-BuOK in THF gegeben und 3,5 h gerührt. Dann wurde unter starkem Rühren bei 0° in 28 ml 2N HCl langsam eingetropft; darauf mit *ca*. 180 ml ges. wässr. Na₂CO₃-Lsg. basisch gestellt, 3mal mit je 50 ml Et₂O gewaschen und die Et₂O-Phasen wurden getrocknet und eingedampft. SC (Hexan/Et₂O 8:2) ergab 0,757 g (74,2%, R_f *ca*. 0,3) 7a und 0,177 g (17,4%, R_f *ca*. 0,2) 7b, beides farblose Öle.

8. Epimerisierung von 7a zu 7b. Aus 0,05 ml (0,3 mmol) *N*-Cyclohexyl(isopropyl)amin in 0,3 ml THF, 0,18 ml (0,3 mmol) 1,6N BuLi in Hexan, 50 mg (0,258 mmol) 7a in 0,1 ml THF und 68 mg (0,268 mmol) I_2 in 0,66 ml THF wurde analog *Versuch 5* der c/t-*lodo-r-3-methyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin-t/c-5-carbonsäure-methylester* (12) hergestellt (nach Zutropfen zu I₂ noch 30 min gerührt). Danach wurde mit 0,05 ml konz. HCl versetzt, die Lsg. auf 20° erwärmt. Dann wurden 0,43 ml (0,3 mmol) und nach 30 min Rühren weitere 0,2 ml (0,14 mmol) 0,7M NaBH₃CN-Lsg. in MeOH zugegeben. Nach nochmals 30 min Rühren wurde das Gemisch mit *ca.* 18 ml ges. wässr. Na₂CO₃-Lsg. versetzt, die H₂O-Phase abgetrennt, mit Et₂O gewaschen, die org. Phasen wurden getrocknet und eingedampft. Präp. DC (Hexan/Et₂O 2:8) ergab 12 mg (23,8%; R_f *ca.* 0,7) 7a und 38 mg (74,3%; R_f *ca.* 0,4) 7b.

9. r-3-Methyl-1,2,3,5,6,7,8,t-8a-octahydroindolizin-c-5- $({}^{2}H_{2})$ methanol (8). In 3 ml THF wurden 445 mg (2,26 mmol) 7b mit 93 mg (2,21 mmol) LiAlD₄ bei 20° 8 h gerührt und anschliessend bei 0° mit 20 ml H₂O/10% wässr. H₂SO₄-Lsg. 1:1 versetzt. Das Gemisch wurde mit Et₂O gewaschen, mit 2N wässr. NaOH basisch gestellt, mit CHCl₃ extrahiert und die CHCl₃-Phasen wurden getrocknet und eingedampft: 360 mg (93%) 8, gelbliches Öl. IR: 3430 und 3170 (br., OH), 2960s, 2930s, 2860, 2800, 2720, 2680 (2800–2680, *Bohlmann*-Banden), 2210 und 2100 (C--D), 1460, 1445, 1390, 1375, 1330, 1300, 1280, 1260, 1240, 1180, 1160, 1120. ¹H-NMR: 2,91 (br. *s*, OH); 2,82–2,62 (*m*, 1 H); 2,32–2,10 (*m*, 2 H); 2,04–1,89 (*t*-artiges *m*, 1 H); 1,89–1,58 (*m*, 5 H); 1,58–1,12 (*m*, 7 H), darin bei 1,25 (*d*, *J* = 6, 1, CH₃). ¹³C-NMR: 67,7, 65,5 (2*d*); 62,4 (*quint.*, CD₂OH); 58,2 (*d*); 32,0, 30,5, 29,6, 29,4, 24,3 (5*t*); 24,3 (*g*, CH₄–C(3)). CI-MS: 172 ([*M* + 1]*).

8 · HCl: IR (KBr): 3340s (br., OH), 2970, 2950s, 2870, 2820, 2720, 2680, 2190 und 2090 (C–D), 1455, 1450, 1430, 1400, 1390, 1380, 1170, 1145, 1135, 1115, 1100. ¹H-NMR (CD₃OD): 3,94–3,72 (*m*, 1H); 3,28–3,12 (*m*, 2 H); 2,46–2,24 (*m*, 1 H); 2,2–1,5 (*m*, 12 H), darin bei 1,56 (*d*, J = 6,6, CH₃–C(3)). ¹³C-NMR (CD₃OD): 72,2, 68,8, 63,5 (3*d*, C(3), C(5), C(9)); 60,7 (*quint.*, CD₂OH); 31,7, 29,4, 28,7, 28,6, 23,9 (5*t*); 20,8 (*q*, CH₃–C(3)). CI-MS: 172 ([M + 1]⁺ der freien Base).

10. r-3,c-5-(5-methyl-²H₂)Dimethyl-1,2,3,5,6,7,8,t-8a-octahydroindolizinium-pikrat (11). In ca. 8 ml Et₂O wurden 28 mg (0,18 mmol) 8 gelöst. Nach kurzem Durchblasen mit trockenem HCl-Gas wurden 34 mg (0,18 mmol) 8 · HCl erhalten. Dieses wurde in 5 ml SOCl, gelöst, 30 min unter Rückfluss gekocht, dann SOCl, abgezogen, der Rückstand in ges. wässr. Na, CO, -Lsg. aufgenommen und mit CHCl, gewaschen. Die org. Phasen wurden getrocknet und eingedampft: 29 mg (91%) 9. Diese wurden in 3 ml Toluol gelöst und 22 h unter Rückfluss gekocht, wobei 0,66 ml (2,49 mmol) Bu₃SnH in zwei und 15 mg (0,09 mmol) AIBN in drei Portionen je in regelmässigen Abständen zugegeben wurden. Die Lsg. wurde mit CH,Cl, verdünnt und mit 2N HCl gewaschen. Die HCl-Phasen wurden mit 2N wässr. NaOH-Lsg. basisch gestellt und mit CH, Cl, gewaschen, die vereinigten CH,Cl,-Phasen getrocknet, mit ges. Pikrinsäure-Lsg. (Et,O) versetzt und eingedampft. Extraktion der überschüssigen Pikrinsäure mit Et, O und Umkristallisation aus Toluol ergaben 46 mg (72,6%) 11, gelbe Kristalle. Schmp. ca. 180° (Zers.). IR: 2980 und 2770 (br.), 1630 und 1610s (C=C), 1565 (NO₂), 1555, 1525, 1515, 1495, 1450, 1430, 1390, 1365, 1335, 1320s (NO₂), 1295, 1270, 1165, 1100. ¹H-NMR: 9,2-8,2 (br. s, NH⁺); 8,84 (s, 2 arom. H); 3,58-3,40 (m, H-C(3)); 3,12-2,84 (m, H-C(5), H-C(8a)); 2,50-2,18 (m, 2 H); 2,18-1,76 (m, 6 H); 1,76-1,30 (m, 6 H), darin bei 1,57 (d, J = 6,7, CH, -C(3)). ¹³C-NMR: 161,2,141,8,127,2 (3s); 126,0 (d, 2 C); 71.9, 126,0 (d,64,0, 62,9 (3d, C(3), C(5), C(9)); 31,7, 30,4, 27,6, 27,1, 23,1 (5t); 20,4 (q, CH₂-C(3)); 18,4 (quint., CD₂H). CI-MS: 229 (28, [Pikrinsäure]*), 157 (14), 156 (100, [M + 1]* der freien Base), 155 (50), 154 (33), 140 (35, [M -CH,]⁺), 138 (13, [M-CD,H]⁺). EI-MS (MAT 90): 229 (33, [Pikrinsäure]⁺), 155 (8, M⁺ der freien Base), 154 (10), $14I(9), 140(100, [M - CH_1]^*), 139(8), 138(67, [M - CD_2H]^*), 112(7), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(6), 62(17), 55(6), 110(6), 91(13), 63(16), 91(13), 63(16), 91(13), 63(16), 91(13), 63(16), 91(13), 91(1$ 53 (6), 50 (5), 41 (12). Anal. ber. für C_{16} H_{20} D_2 N_4 O_7 (384,388): C 50,00, H/D 6,29, N 14,56; gef.: C 50,15, H/D 6,29, H/D 6, 6,56, N 14,49.

LITERATURVERZEICHNIS

- [1] W. Huggenberg, M. Hesse, Helv. Chim. Acta 1983, 66, 1519.
- [2] M. C. Kloetzel, J. Am. Chem. Soc. 1947, 69, 2271.
- [3] R. V. Stevens, A. W. M. Lee, J. Chem. Soc., Chem. Commun. 1982, 102.
- [4] A. S. Howard, J. P. Michael 'Simple Indolizidine and Quinolizidine Alkaloids', in 'The Alkaloids', Ed. A. Brossi, Academic Press, New York, 1986, Vol. 28, S. 183.
- [5] M. Itoh, D. Hagiwara, T. Kamiya, Bull. Chem. Soc. Jpn. 1977, 50, 718.
- [6] M. W. Rathke, A. Lindert, Tetrahedron Lett. 1971, 43, 3995.
- [7] B. F. Lundt, N. L. Johansen, A. Vølund, J. Markussen, Int. J. Pept. Protein Res. 1978, 12, 258.
- [8] R. F. Borch, M. D. Bernstein, H. D. Durst, J. Am. Chem. Soc. 1971, 93, 2897.
- [9] J. F. Kerwin, G. E. Ullyot, R. C. Fuson, C. L. Zirkle, J. Am. Chem. Soc. 1947, 69, 2961.
- [10] L. W. Menapace, H. G. Kuivila, J. Am. Chem. Soc. 1964, 83, 3047; J.-L. Stein, L. Stella, J.-M. Surzur, Tetrahedron Lett. 1980, 21, 287.
- [11] R. B. Herbert, 'Biosynthesis', in 'The Alkaloids', Ed. M. F. Grundon, Royal Society of Chemistry, London, 1981, Vol. 11, S. 15; A. R. Pinder, 'Pyrrolidine, Piperidine, and Pyridine Alkaloids', *ibid.* S. 30.
- [12] T. H. Jones, M. S. Blum, H. M. Fales, C. R. Thompson, J. Org. Chem. 1980, 45, 4778; E. Talman, F. J. Ritter, P. E. J. Verwiel, 'Structure Elucidation of Pheromones Produced by the Pharaoh's Ant, Monomorium pharaonis L.', in 'Mass Spectrometry in Biochemistry and Medicine', Eds. A. Frigerio und N. Castagnoli, Raven Press, New York, 1974, S. 197; T. H. Jones, R. J. Highet, M. S. Blum, H. M. Fales, J. Chem. Ecol. 1984, 10, 1233; C. A. Broka, K. K. Eng, J. Org. Chem. 1986, 51, 5045; P. Slosse, C. Hootelé, Tetrahedron 1981, 37, 4287; E. Gössinger, Monatsh. 1980, 111, 143.
- [13] F. Bohlmann, Chem. Ber. 1958, 91, 2157; A.E. Theobald, R. G. Lingard, Spectrochim. Acta Part A 1968, 24, 1245.
- [14] a) P.E. Sonnet, D. A. Netzel, R. Mendoza, J. Heterocycl. Chem. 1979, 16, 1041; P. E. Sonnet, J. E. Oliver, ibid. 1975, 12, 289; T. A. Crabb, Chem. Rev. 1971, 71, 109; b) H. P. Hamlow, S. Okuda, Tetrahedron Lett. 1964, 37, 2553.